Bandpass Filter

50Ω Constant Impedance 58 to 82 MHz

SMA MALE

ACROSS FLATS

Maximum Ratings

Operating Temperature	-55°C to 100°C
Storage Temperature	-55°C to 100°C
RF Power Input	0.5W max.

Permanent damage may occur if any of these limits are exceeded.

Features

- low VSWR in pass- and stopbands, 1.3:1 typ
- rugged shielded case
- · custom fo models available

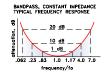
Applications

- harmonic rejection
- lab use

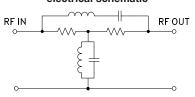
CASE STYLE: FF99

 Connectors
 Model
 Price
 Qty.

 SMA
 SIF-70+
 \$38.95 ea. (1-9)


+ RoHS compliant in accordance with EU Directive (2002/95/EC)

The +Suffix has been added in order to identify RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications.


Bandpass Filter Electrical Specifications

CENTER FREQ. (MHz)	PASSBAND (MHz)	STOPBANDS		VSWR, 1.3:1 Typ. TOTAL BAND (MHz)
	(loss<1 dB)	(loss > 10 dB) at MHz	(loss > 20 dB) at MHz	
70	58-82	16 & 280	4.4 & 490	DC-550

typical frequency response

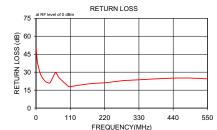
electrical schematic

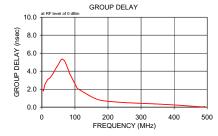
Outline Dimensions (inch)

Outline Drawing

SMA FEMALE

D±.05


В


wt	Ε	D	В
grams	.312	1.98	.67
42 0	7 92	50 29	17 02

Typical Performance Data

Frequency (MHz)		on Loss IB)	Return Loss (dB)	Frequency (MHz)	Group Delay (nsec)
\ \ \ \	<u>x</u> `	΄ σ		, ,	(,
1.0	36.56	0.2	49.5	4.4	1.965
1.7	32.08	0.2	45.9	4.5	1.803
2.4	29.16	0.2	43.7	8.4	2.416
3.0	27.01	0.2	41.6	12.2	2.736
3.7	25.26	0.2	40.1	16.1	2.984
4.4	23.82	0.2	38.7	17.0	3.059
6.0	21.13	0.2	36.2	26.2	3.326
12.7	14.61	0.2	29.4	35.1	3.817
16.0	12.53	0.2	27.5	43.9	4.422
20.0	10.51	0.2	25.5	44.7	4.419
28.3	7.27	0.2	22.7	57.9	5.270
36.7	4.76	0.2	21.3	58.9	5.288
45.0	2.79	0.1	21.3	62.0	5.357
58.0	0.77	0.1	27.9	65.3	5.248
63.7	0.34	0.1	29.7	68.8	5.146
70.0	0.24	0.1	26.9	72.4	4.843
74.7	0.35	0.1	25.1	75.0	4.639
105.0	2.87	0.1	17.9	79.0	4.231
110.0	3.34	0.2	18.0	81.8	3.959
166.7	7.80	0.2	20.2	83.2	3.803
223.3	11.10	0.2	21.3	105.9	2.168
280.0	13.80	0.3	23.0	107.8	2.082
290.0	14.28	0.3	23.1	166.0	0.886
423.3	20.50	0.9	24.9	222.6	0.581
490.0	24.04	1.4	25.1	278.6	0.458
500.0	24.60	1.5	25.0	342.8	0.360
512.5	25.30	1.5	24.9	348.7	0.351
525.0	25.98	1.6	24.8	421.7	0.199
537.5	26.70	1.6	24.6	484.2	0.031
550.0	27.34	1.4	24.5	492.6	0.079

Mini-Circuits® ISO 9001 ISO 14001 AS 9100 CERTIFIED

For detailed performance specs & shopping online see web site

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipality.com