Available at Digi-Key M100F / V

High Precision TCXO / VCTCXO Oscillators

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040

> US Headquarters: 630-851-4722

> www.conwin.com

European Headquarter +353-61-472221

Description:

The Connor-Winfield M100, M170, and M200 models offer precise frequency stability and excellent phase noise in a 5x3.2mm package.

Through the use of analog temperature compensation, these TCXO's and VCTCXO's are capable of holding sub 100 ppb and 200ppb stabilities over the commercial or industrial temperature ranges.

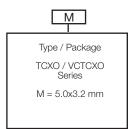
Basestation, Communications, DSL / ADSL, Femtocell, IP Timing, LTE, Precision GPS, SONET / SDH, WiMAX / WiBro, WLAN.

Features:

Models: M100, M170, M200 Series

- Package: 5 x 3.2mm, 8 Pads
- Frequencies Available: 10, 12.8, 19.2 or 20 MHz
- 3.3 Vdc Operation
- Output Logic: LVCMOS
- Frequency Stability:

M100: ±100 ppb, 0 to 70°C M170: ±100 ppb -20 to 70°C M200: ±200 ppb, -40 to 85°C


- Fixed Frequency TCXO
- Optional Control Voltage VCTCXO
- Low Jitter < 0.50 ps RMS
- Low Phase Noise
- Tape and Reel Packaging
- RoHS Compliant / Lead Free

 ✓ RoHS

Absolute Maximum Ratings

Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-40	-	85	°C	
Supply Voltage (Vcc)	-0.5	-	4.6	Vdc	
Input Voltage (Vc)	-0.5	-	Vcc + 0.5	Vdc	

Ordering Information

100

Frequency Stability and Temperature Range

 $100 = \pm 100$ ppb, 0 to 70°C 170 = ± 100 ppb, -20 to 70°C 200 = ± 200 ppb, -40 to 85°C

Supply Voltage = 3.3 Vdc Output Logic = LVCMOS

Output Frequency

- 012.8M

Frequency Format
-xxx.xM Min
-xxx.xxxxxM Max
*Amount of numbers after
the decimal point.
M = MHz

-I(\structure \rightarrow \rig

Bulletin	Tx382
Page	1 of 4
Revision	01
Date	02 Sept 2014

Example: Part Number

M100F-012.8M = 5x3.2mm package, ± 100 ppb, 0 to $70\,^{\circ}$ C, 3.3 Vdc, LVCMOS Output, TCXO, 12.8 MHz M100V-019.2M = 5x3.2mm package, ± 100 ppb, 0 to $70\,^{\circ}$ C, 3.3 Vdc, LVCMOS Output, TVCCXO, 19.2 MHz M200F-010.0M = 5x3.2mm package, ± 200 ppb, -40 to $85\,^{\circ}$ C, 3.3 Vdc, LVCMOS Output, TCXO, 10 MHz M200V-020.0M = 5x3.2mm package, ± 200 ppb, -40 to $85\,^{\circ}$ C, 3.3 Vdc, LVCMOS Output, VCTCXO, 20 MHz

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040 www.conwin.com

	-				
	Operating Sp	pecifications			
Parameter	Minimum	Nominal	Maximum	Units	Notes
Output Frequency (Fo)		10, 12.8, 19.2 or 20		MHz	140103
Frequency Calibration @ 25 °C	-1.0	-	1.0	ppm	1
requency Stability		dering Information f			
Model M100x and M170x	-100	-	100	ppb	2
Model M200x	-200	_	200	ppb	2
Frequency vs. Load Stability	-0.20	_	0.20	ppm	±5%
requency vs. Voltage Stability	-0.20		0.20	ppm	±5%
Static Temperature Hysteresis	-		0.40	ppm	3
reg. shift after reflow soldering	-1.0		1.0	ppm	4
Long Term Stability	-1.0	<u> </u>	1.0		5
	-1.0	-	1.0	ppm	
Aging	2.0		2.0	nnm	
per Life (20 Years)	-3.0	-	3.0	ppm	
per Day	-40	-	40	ppb	
per Second	- (0.00	4.63E-13	-	pps	
Operating Temperature Range		dering Information t	•		
Model M100x	0	-	70	°C	
Model M170x	-20	-	70	°C	
Model M200x	-40	-	85	°C	
Supply Voltage (Vcc)	3.135	3.30	3.465	Vdc	
Supply Current (Icc)	-	-	3.3	mA	
Jitter:					
Period Jitter	-	3.0	5.0	ps RMS	
Integrated Phase Jitter (12K to 20M)	-	0.5	1.0	ps RMS	6
SSB Phase Noise for Fo=12.8 MHz				1	
@ 10 Hz offset	-	-90	_	dBc/Hz	
@ 100 Hz offset	-	-120	_	dBc/Hz	
@ 1 KHz offset	_	-140	_	dBc/Hz	
@ 10 KHz offset	_	-150	_	dBc/Hz	
@ 100 KHz offset	_	-150	_	dBc/Hz	
	-		-		
@ 1 MHz offset SSB Phase Noise for Fo=19.2MHz	-	-152	-	dBc/Hz	
		00		ما ۵ م / ۱ ا –	
@ 10 Hz offset	-	-90	-	dBc/Hz	
@ 100 Hz offset	-	-115	-	dBc/Hz	
@ 1 KHz offset	-	-135	-	dBc/Hz	
@ 10 KHz offset	-	-151	-	dBc/Hz	
@ 100 KHz offset	-	-154	-	dBc/Hz	
@ 1 MHz offset	-	-155	-	dBc/Hz	
Start-Up Time	-	-	10	ms	
	Control Voltage Inp	out Characteris	tics		
Parameter	Minimum	Nominal	Maximum	Units	Notes
Control Voltage	0.3	1.65	3.0	V	
Frequency Pullability	±10	<u> </u>	-	ppm	
Control Voltage Slope		Positive Slope		1-1	
Monotonic Linearity	_	-	10	%	
nput Impedance	100K	_	-	Ohm	
Modulation Bandwidth (3dB)	1001			KHz	
MOGGIANOTI DATIGWIGHT (OGD)		Ohavaatasiisti		INIZ	
Darameter	LVCMOS Output			Lleite	Notes
Parameter	Minimum	Nominal	Maximum	Units	Notes
Load (CL)	-	15	-	pF	7
oltage (High) (Voh)	90%Vcc	-	-	Vdc	
(Low) (Vol)	-	-	10%Vcc	Vdc	
Outy Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time 10% to 90%		4	8	ne	

8

ns Bulletin

Page

Date

Revision

Tx382

2 of 4

02 Sept 2014

01

Rise / Fall Time 10% to 90%

CONNOR WINFIELD

Aurora, Illinois 60505 Phone: 630-851-4722

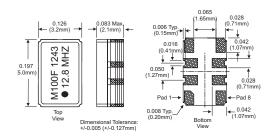
Fax: 630-851-5040 www.conwin.com

Package Characteristics

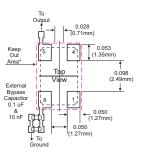
Package Hermetically sealed ceramic package with grounded metal cover

Environmental Characteristics

Vibration:	Vibration per Mil Std 883E Method 2007.3 Test Condition A.
Shock:	Mechanical Shock per Mil Std 883E Method 2002.4 Test Condition B.
Soldering Process:	RoHS compliant lead free. See soldering profile on page 2.


Notes:

- 1. Initial calibration @ 25°C. ±2°C, for VCTCXO's Vc = 1.65V. Specifications at time of shipment after 48 hours of operation.
- 2. Frequency stability vs. change in temperature. [±(Fmax-Fmin)/2.Fo]. For VCTCXO's Vc -= 1.65V
- 3. Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C
- 4. Two consecutive reflows after 1 hour recovery @ 25°C.
- 5. Frequency drift over 1 year @ 25°C.
- 6. BW = 12 KHz to 20 MHz
- 7. Attention: To achieve optimal frequency stability, and in some cases to meet the specification stated on this data sheet, it is required that the circuit


connected to this TCXO output must have the equivalent input capacitance that is specified by the nominal load capacitance. Deviations from the

nominal load capacitance will have a graduated effect on the stability of approximately 20 ppb per pF load difference..

M100 - M200 Package Outline

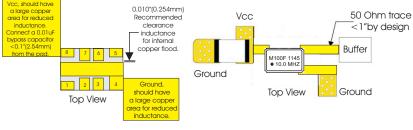
M100 - M200 Suggested Pad Layout

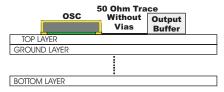
* Do not route any traces in the keep out area. It is recommended the next layer under the keep out area is to be ground plane.

M100 - M200 Pad Connections

1:	VCTCXO: Control Voltage (Vc)
	TCXO: N/C
2:	Do Not Connect
_3:	Do Not Connect
4:	Ground
_5:	Output
6:	Do Not Connect
_7:	Do Not Connect
_8:	Supply Voltage (Vcc)

Bulletin	Tx382
Page	3 of 4
Revision	01
Date	02 Sept 2014

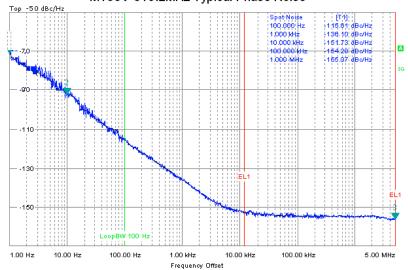

Aurora, Illinois 60505


Phone: 630-851-4722 Fax: 630-851-5040

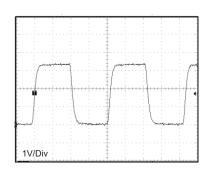
www.conwin.com

M100 - M200 Design Recommendations

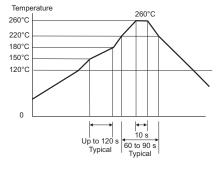
0.010"(0.254mm) Vcc Recommended


DNC DNC Supply Voltage Output 10 nF 0.1 uF 15 pF TCXO = N/C VCTCXO = Vc DNC DNC

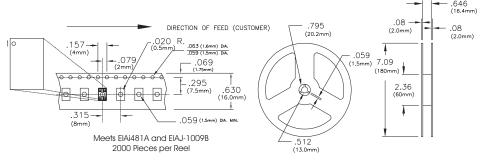
DNC = Do Not Connect


M100 - M200 Test Circuit

Phase Noise Information


M100V-019.2MHz Typical Phase Noise

LVCMOS Output Waveform



Solder Profile

Meets IPC/JEDEC J-STD-020C

Tape and Reel Information

Revision History

Revision	Date	Changes
00	10/31/12	Data sheet released
01	09/02/14	Phase Noise Plot and Specifications Update

Bulletin	Tx382
Page	4 of 4
Revision	01
Date	02 Sept 2014