

3 Watt Cellular T/R and Antenna Changeover Switch DC - 3.0 GHz

Rev. V5

Features

- Low Cost Plastic SOT-26 Package
- Low Insertion Loss: < 0.6 dB @ 1900 MHz
- Low Power Consumption: <20µA @ +3V
- Very High Intercept Point: 53 dBm IP3
- Both Positive and Negative 2.5 to 8 V Control
- For CDMA, W-CDMA, TDMA, GSM, PCS and **DCS** Applications

Description

M/A-COM's SW-425 is a GaAs monolithic switch in a low cost SOT-26 surface mount plastic package. The SW-425 is ideally suited for applications where very low consumption $(<10 \mu A @ 5V)$, intermodulation products and very small size are required. Typical applications include Internal/External antenna select switch for portable telephones and data radios. In addition, because of its low loss, good isolation and inherent speed, the SW-425 can be used as a conventional T/R switch or as an antenna diversity switch. The SW-425 can be used in power applications up to 3 watts in systems such as cellular PCS, CDMA, W-CDMA, TDMA, GSM and other analog/digital wireless communications systems.

The SW-425 is fabricated using M/A-COM's 0.5 micron gate length GaAs PHEMT process. The process features full chip passivation for increased performance and reliability.

Ordering Information¹

Part Number	Package		
SW-425 PIN	Bulk Packaging		
SW-425TR	1000 piece reel		

^{1.} Reference Application Note M513 for reel size information.

Absolute Maximum Ratings²

Commitment to produce in volume is not guaranteed.

Parameter	Absolute Maximum		
Input Power (0.5—3.0 GHz) 3 V Control 5 V Control	+36 dBm +38 dBm		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

^{2.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Functional Diagram

Pin Configuration

Pin No.	Function	Pin No.	Function
1	RF1	4	VB
2	Ground	5	RF Common
3	RF2	6	VA

Truth Table

Mode (Control)	Control A	Control B	RFC - RF1	RFC - RF2
Positive ⁴	0 <u>+</u> 0.2 V	+2.5 to +8 V	Off	On
	+2.5 to +8 V	0 <u>+</u> 0.2 V	On	Off
Positive/	-Vc <u>+</u> 0.2 V	+Vc	Off	On
Negative ^{3,4}	+Vc	-Vc <u>+</u> 0.2 V	On	Off
Negative ⁵	0 ± 0.2 V	-2.5 to -8 V	On	Off
	-2.5 to -8 V	0 <u>+</u> 0.2 V	Off	On

- 3. External DC blocking capacitors are required on all RF ports. 39 pF capacitors can be used for positive control voltage.
- 4. [-VCTL], VCTL < 8 V
- 5. If negative control is used, DC blocking capacitors are not required on RF ports.

[•] India Tel: +91.80.43537383

[•] China Tel: +86.21.2407.1588

3 Watt Cellular T/R and Antenna Changeover Switch DC - 3.0 GHz

Rev. V5

Electrical Specifications: $T_A = +25$ °C

Parameter	Test Conditions		Min	Тур	Max
Insertion Loss	DC - 1 GHz 1 - 2 GHz 2 - 3 GHz			0.4 0.55 0.7	0.5 0.65 0.8
Isolation	DC - 1 GHz 1 - 2 GHz 2 - 3 GHz		18 13 10	20 15 12	_ _ _
VSWR	DC - 3 GHz		_	1.2:1	1.4:1
P1dB (3 V supply)	500 MHz - 3 GHz		32	34	_
P1dB (5 V supply)	500 MHz - 3 GHz		34	36	_
Input IP2	Two-Tone, 5 MHz spacing, +10 dBm (+13 dBm total) $V_{CTL} = 3 V$ 0.9 GHz		62	70	_
Input IP3	Two-Tone, 5 MHz spacing, +10 dBm (+13 dBm total) V _{CTL} = 3 V 0.9 GHz		48	53	_
2nd Harmonics	Pin 30 dBm $[V_{CTL}] = 3 V$ Pin 33 dBm $[V_{CTL}] = 5 V$		65 65	70 75	_
3rd Harmonics	Pin 30 dBm [V_{CTL}] = 3 V Pin 33 dBm [V_{CTL}] = 5 V		45 65	48 75	_
Trise, Tfall	10% to 90% RF, 90% to 10% RF		_	60	_
Ton, Toff	50% Control to 90% RF, Control to 10% RF		_	20	_
Transients	In-Band		_	20	_
Gate Leakage Current	V _{CTL} = 3 V		_	10	20

SOT-26

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

India Tel: +91.80.43537383
China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.

3 Watt Cellular T/R and Antenna Changeover Switch DC - 3.0 GHz

Rev. V5

Typical Performance Curves

VSWR

2nd Harmonic vs. V_{CTL} @ = 900 MHz

Isolation

Input Compression Point vs. V_{CTL} @ 900 MHz

3rd Harmonic vs. V_{CTL} @ = 900 MHz

- India Tel: +91.80.43537383 Visit www.macomtech.com for additional data sheets and product information.
- China Tel: +86.21.2407.1588