

TAT8888 CATV GaN Power Doubler Hybrid

Applications

- HFC Nodes
- CATV Line Amplifiers
- Head End Equipment

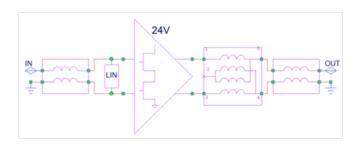
SOT-115 Hybrid Module

Functional Block Diagram

Product Features

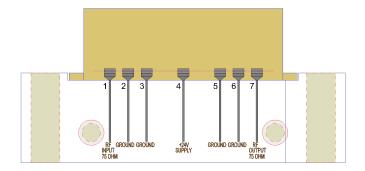
- Excellent High Output Linearity
- High Gain 24dB @ 1000MHz
- 50MHz 1000MHz Bandwidth
- Ultra-Low CSO/CTB/XMOD
- Low Noise
- Excellent Input/Output Match
- SOT-115J Packaging
- High Reliability
- 24V, 445mA

General Description


The TAT8888 is an ultra-linear, packaged GaAs/GaN amplifier intended for output stage amplification in CATV infrastructure applications.

The TAT8888 features a push-pull cascode design which provides flat gain along with ultra-low distortion, making it ideal for use in CATV distribution systems requiring high output power capability.

The TAT8888 draws 445mA from a 24V supply and exceeds the output linearity performance of traditional GaAs-based amplifiers.


The TAT8888 employs patented linearization circuitry to achieve superior distortion characteristics at high output levels.

The TAT8888 is packaged in an industry standard 7-pin SOT-115J module.

Pin Configuration

Pin No.	Label
1	RF Input 75 Ohm
2-3, 5-6	GND
4	+24 V Supply
7	RF Output 75 Ohm

Ordering Information				
Part No.	Description			
TAT8888	CATV GaN Power Doubler Hybrid			

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to +100°C
RF Input Power, CW, 75Ω, T=25 [°] C	70 dBmV
Supply Voltage (V _{DD})	+30 V
Supply Current (I _{DD})	600 mA

Operation of this device outside the parameter ranges given above may cause permanent damage.

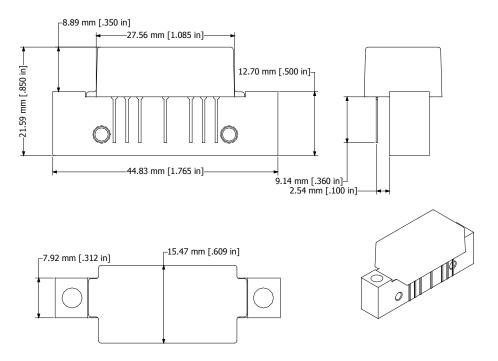
Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Supply Voltage (V _{DD})		24		V
Case Temperature	-30		+100	°C
Tj for >10 ⁶ hours MTTF			160	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Typical Performance – Push-Pull Configuration ⁽¹⁾

Test conditions unless otherwise noted: V_{DD} =+24 V, 75 Ω System, Base Temp=+35°C.


Parameter	Conditions	Min	Тур	Max	Units
Operating Frequency		50		1000	MHz
Gain	f = 1000 MHz	23		24.5	dB
Gain Slope	50 to 1000 MHz	0.25		1.5	dB
Gain Flatness	Relative to Slope Line		±0.5	±0.8	dB
Input Return Loss	50 to <550 MHz	18			dB
	>550 MHz to 1000 MHz	16			
Output Return Loss		18			dB
СТВ			-69	-65	dBc
CSO	79 channels NTSC		-75	-69	dBc
XMOD	 75 channels QAM, -6dB offset, 61 dBmV virtual output, 18dB Tilt 		-65		dBc
CCN		55	58		dBm
Output IP3	Pout= 19 dBm/tone, at 500 MHz Δf = 6 MHz		53		dB
Noise Figure			3.5		dB
Supply Current, I _{DD}			445	460	mA
Thermal Resistance, θ_{ic}	Junction to case		5		°C/W

Notes:

1. Includes balun, board, and connector losses.

Mechanical Specifications

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triguint.com	Tel:	+1.503.615.9000
Email:	info-sales@tqs.com	Fax:	+1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.