SCG002 InGaP HBT Gain Block

Product Features

- DC 6 GHz
- 21 dB Gain @ 1 GHz
- +15.5 dBm P1dB @ 1 GHz
- +29 dBm OIP3 @ 1 GHz
- 3.8 dB Noise Figure
- Internally matched to 50Ω
- Lead-free/green/RoHS-compliant SOT-89 Package

Applications

- Mobile Infrastructure
- CATV / FTTX
- WLAN / ISM

Parameter

Test Frequency

Output P1dB

Output IP3⁽²⁾

Output P1dB

Output IP3⁽²⁾

Noise Figure

Device Voltage

Device Current

Test Frequency

Input Return Loss

Output Return Loss

Gain

Gain

- RFID
- WiMAX / WiBro

Specifications⁽¹⁾

Operational Bandwidth

Units

MHz

MHz

dB

dBm

dBm

MHz

dB

dB

dB

dBm

dBm

dB

v

mΑ

1. Test conditions unless otherwise noted: 25 °C, Supply Voltage = +5 V, Rbias = 24 Ω , 50 Ω system.

30IP measured with two tones at an output power of +2 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.

Min

DC

19

3.5

Typ

1000

21

+15.5

+29

2000

20

14

20

+15

+29

3.8

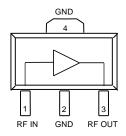
3.9

45

Max

6000

4.3


Product Description

The SCG002 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1000 MHz, the SCG002 typically provides 21 dB of gain, +29 dBm Output IP3, and +15.5 dBm P1dB.

The SCG002 consists of a Darlington-pair amplifier using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is housed in a leadfree/green/RoHS-compliant SOT-89 SMT package. All devices are 100% RF and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the SCG002 will work for other various applications within the DC to 6 GHz frequency range such as CATV and mobile wireless.

Functional Diagram

Function	Pin No.
Input	1
Output/Bias	3
Ground	2,4

Typical Performance⁽¹⁾

Parameter	Units		Тур	ical	
Frequency	MHz	500	900	1900	2140
S21	dB	21.6	21	20.5	19.7
S11	dB	-17	-17	-15	-14.5
S22	dB	-18	-18	-21	-21
Output P1dB	dBm	+15.8	+15.5	+15	+14.9
Output IP3 ⁽²⁾	dBm	+28	+29	+29	+29
Noise Figure	dB	3.8	3.7	3.8	3.8

Not Recommended for New Designs

Recommended Replacement Part: TQP369182

Absolute Maximum Rating

Parameter	Rating
Storage Temperature	-55 to +150 °C
Device Current	150 mA
RF Input Power (continuous)	+12 dBm
Thermal Resistance, Rth	131°C/W
Junction Temperature	+160 °C

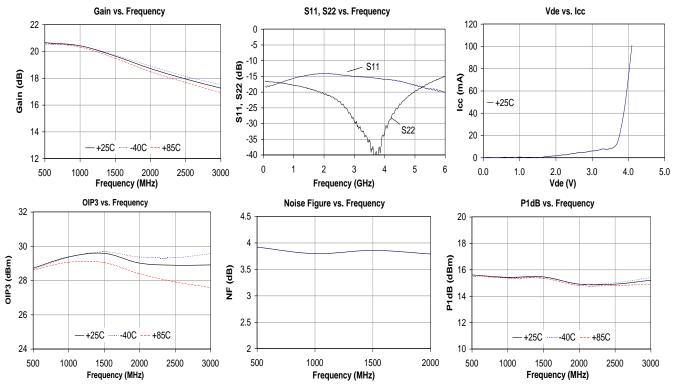
Ordering Information

Part No.	Description
SCG002B-G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 package)

Standard tape / reel size = 1000 pieces on a 7" reel

Operation of this device above any of these parameters may cause permanent damage.

Specifications and information are subject to change without notice



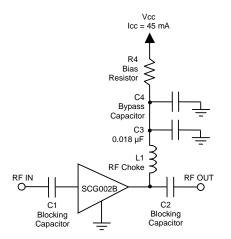
Typical Device RF Performance Supply Bias = +5 V, $R_{bias} = 24 \Omega$, $I_{cc} = 45 mA$

Frequency	MHz	100	500	900	1900	2140	2400	3500	5800
S21	dB	22	21.6	21	20.5	19.7	19.2	17.4	14.3
S11	dB	-18	-17	-16	-15	-15	-15	-16	-19
S22	dB	-16.7	-17	-18	-20	-21	-22	-35	-16
Output P1dB	dBm	+15.4	+15.6	+15.5	+15	+15	+15	+14.5	+11
Output IP3	dBm	+28	+28	+29	+29	+29	+29		
Noise Figure	dB	3.9	3.8	3.8	3.8	3.8	3.9		

1. Test conditions: T = 25 °C, Supply Voltage = +5 V, Device Voltage = +3.9 V, Rbias = 24 Ω, Icc = 45 mA typical, 50 Ω System.

3. 30IP measured with two tones at an output power of -1 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.
 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.

Typical Device S-Parameters


	S	-Parameters (Va	levice = +3.9 V, 1	$I_{\rm CC} = 45 \text{ mA}, \text{ T}$	= 25 °C, calibra	ated to device le	eads)	
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-33.66	160.38	22.12	177.97	-23.51	-0.74	-42.92	-10.61
500	-25.70	57.47	21.92	160.79	-23.66	0.45	-25.55	-59.74
1000	-22.88	73.66	21.40	142.72	-23.41	0.69	-22.04	-132.34
1500	-20.95	88.39	20.67	126.57	-23.49	1.82	-16.66	-164.52
2000	-21.62	77.79	19.85	111.46	-23.03	2.10	-14.30	-178.04
2500	-22.23	25.60	19.15	99.29	-23.10	1.10	-15.12	-177.70
3000	-21.00	16.65	18.29	86.85	-22.58	2.16	-13.92	170.72
3500	-20.58	10.75	17.55	74.67	-22.06	0.98	-12.97	153.21
4000	-22.29	4.19	16.72	62.69	-21.59	-1.56	-11.90	137.74
4500	-24.96	19.24	15.98	51.73	-20.86	-5.93	-10.64	126.68
5000	-38.73	11.58	15.29	41.78	-20.66	-8.63	-9.87	121.15
5500	-27.75	-158.73	14.67	32.60	-19.86	-10.67	-10.03	119.72
6000	-22.85	-167.85	14.12	23.12	-19.66	-12.11	-10.68	122.34

Device S-parameters are available for download from the website at: www.TriQuint.com

Specifications and information are subject to change without notice

Recommended Application Circuit

452513AW REV2 452513PC REV2 GND J4 J3 +VCC FID1 .11 C2 • • RF OUT RF IN AGXXX-89 EVAL. BRD. FID2 WWW.WJ.COM H • WJCI 1-800-951-4401

SCG002B-PCB

Recommended Component Values

Reference	Frequency (MHz)						
Designator	50	500	900	1900	2200	2500	3500
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH
C1, C2, C4	.018 µF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF

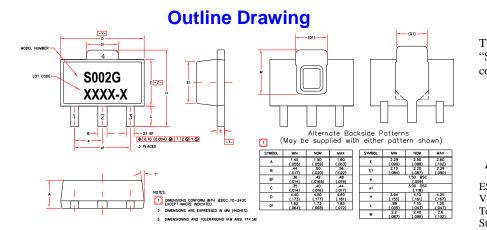
1. The proper values for the components are dependent upon the intended frequency of operation.

2. The following values are contained on the evaluation board to achieve optimal broadband performance:

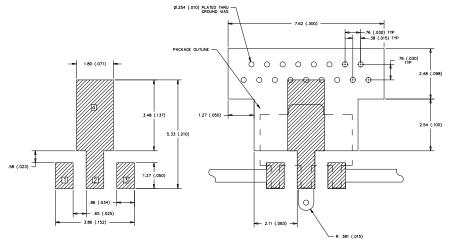
Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 µF chip capacitor	0603
C4	Do Not Place	
R4	24Ω 1% tolerance	0805

Recommended Bias Resistor Values

Supply Voltage	R1 value	Size
5 V	24.4 ohms	0805
6 V	46.7 ohms	0805
8 V	91 ohms	1210
9 V	113 ohms	1210
10 V	136 ohms	2010
12 V	180 ohms	2010


The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +5 V. A 1% tolerance resistor is recommended.

Specifications and information are subject to change without notice



SCG002B-G Mechanical Information

This package is lead-free/Green/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes.

Land Pattern

Product Marking

The component will be marked with an "S002G" designator with an alphanumeric lot code on the top surface of the package.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating:	Class 1A
Value:	Passes between 250 and 500V
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114

MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
 Use 1 oz. Copper minimum.
- Ose i oz. Copper minimum.
 All dimensions are in millimeters (inches). Angles are in degrees.