

# ASL51S9 Data Sheet High Gain, Low Noise Amplifier

#### 1. Product Overview

#### 1.1 **General Description**

ASL51S9 is a low noise amplifier with high linearity over a wide range of frequency up to 1.7 ~ 3.0 GHz with S11 & S22 < -10 dB. It is also suitable for use in the mobile wireless systems such as PCS, WCDMA, LTE, WiBro, WiMAX, WLAN and so on. It has an active bias circuit for stable current over temperature and process variation. The amplifier is available in SOT89 package and passes the stringent DC, RF and reliability tests.

#### 1.2 **Features**

- 16.4 dB Gain at 2000 MHz
- 17.5 dBm P1dB at 2000 MHz
- 37.0 dBm Output IP3 at 2000 MHz
- 0.8 dB NF at 2000 MHz
- MTTF > 100 Years
- Single Supply: +3.3 V

#### 1.3 **Applications**

- Low Noise Amplifier for PCS and WCDMA
- Other Low Noise Application

#### 1.4 Package Profile & RoHS Compliance





# 2. Summary on Product Performances

#### 2.1 Typical Performance

Supply voltage = +3.3 V,  $T_A$  = +25 °C,  $Z_O$  = 50  $\Omega$ .

|                | -, -,,  |       |       |       |      |
|----------------|---------|-------|-------|-------|------|
| Parameter      | Typical |       |       |       | Unit |
| Frequency      | 1700    | 1800  | 1900  | 2000  | MHz  |
| Noise Figure   | 0.70    | 0.75  | 0.75  | 0.80  | dB   |
| Gain           | 17.8    | 17.3  | 16.9  | 16.3  | dB   |
| S11            | -18.0   | -18.0 | -18.0 | -18.0 | dB   |
| S22            | -10.0   | -10.0 | -10.0 | -11.0 | dB   |
| Output IP31)   | 37.0    | 37.0  | 37.0  | 37.0  | dBm  |
| Output P1dB    | 17.5    | 17.5  | 17.5  | 17.5  | dBm  |
| Current        | 60      |       |       |       | mA   |
| Device Voltage | +3.3    |       |       |       | V    |
|                |         |       |       |       |      |

<sup>1)</sup> OIP3 is measured with two tones at the output power of +4 dBm/tone separated by 1 MHz.

#### 2.2 Product Specification

Supply voltage = +3.3 V,  $T_A$  = +25 °C,  $Z_O$  = 50  $\Omega$ .

| Parameter      | Min | Тур   | Max | Unit |
|----------------|-----|-------|-----|------|
| Frequency      |     | 2000  |     | MHz  |
| Noise Figure   |     | 0.80  |     | dB   |
| Gain           |     | 16.3  |     | dB   |
| S11            |     | -18.0 |     | dB   |
| S22            |     | -11.0 |     | dB   |
| Output IP3     |     | 37.0  |     | dBm  |
| Output P1dB    |     | 17.5  |     | dBm  |
| Current        |     | 60    |     | mA   |
| Device Voltage |     | +3.3  |     | V    |

## 2.3 Pin Configuration

| Pin | Description   | Simplified Outline |
|-----|---------------|--------------------|
| 1   | RF_IN         |                    |
| 2   | Ground        |                    |
| 3   | RF_OUT & Bias | 1 2 3              |



#### 2.4 Absolute Maximum Ratings

| Parameters                               | Max. Ratings   |
|------------------------------------------|----------------|
| Operation Case Temperature               | -40 to +85 °C  |
| Storage Temperature                      | -40 to +150 °C |
| Device Voltage                           | +5.5 V         |
| Operation Junction Temperature           | +150 °C        |
| Input RF Power (CW, 50 $\Omega$ matched) | +25 dBm        |

#### 2.5 Thermal Resistance

| Symbol          | Description                              | Тур | Unit |
|-----------------|------------------------------------------|-----|------|
| R <sub>th</sub> | Thermal resistance from junction to lead | 110 | °C/W |

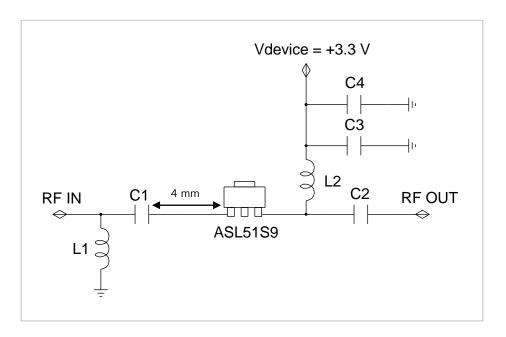
#### 2.6 ESD Classification & Moisture Sensitivity Level

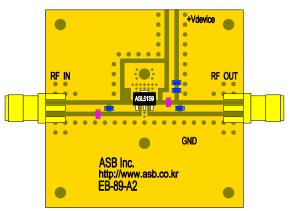
#### **ESD Classification**

| HBM | Class 1A | Voltage Level: 400 V |
|-----|----------|----------------------|
| MM  | Class A  | Voltage Level: 50 V  |

CAUTION: Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Moisture Sensitivity Level


MSL 3 at 260 °C reflow


(Intentionally Blanked)



# 3. Application: $1700 \sim 2000 \text{ MHz} (V_{supply} = +3.3 \text{ V})$

## 3.1 Application Circuit & Evaluation Board



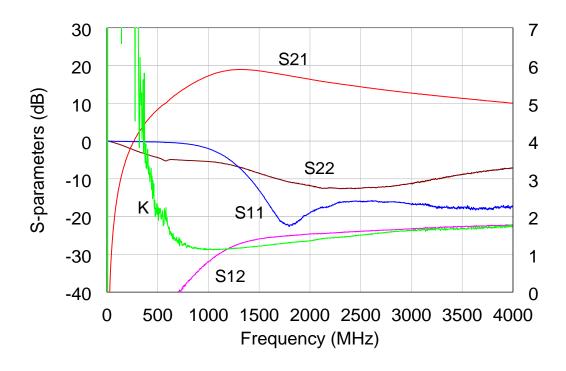


| -A2 |
|-----|
|     |

Bill of Material

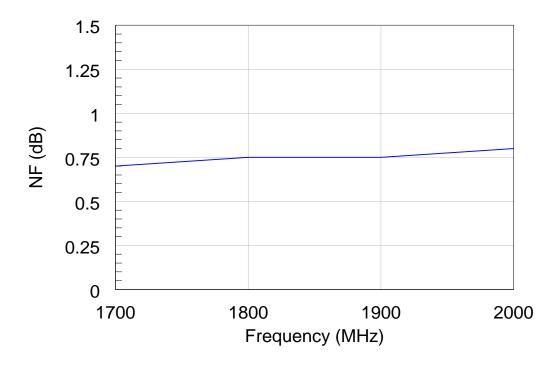
| Symbol  | Value  | Size | Description                     | Manufacturer |
|---------|--------|------|---------------------------------|--------------|
| ASL51S9 | -      | -    | MMIC Amplifier                  | ASB          |
| C1      | 3 pF   | 0603 | DC block and matching capacitor | Murata       |
| C2      | 100 pF | 0603 | DC blocking capacitor           | Murata       |
| C3      | 100 pF | 0603 | Decoupling capacitor            | Murata       |
| C3      | 1 μF   | 0603 | Decoupling capacitor            | Murata       |
| L1      | 5.6 nH | 0603 | Matching inductor               | Murata       |
| L2      | 18 nH  | 0603 | RF choke inductor               | Murata       |




#### 3.2 Performance Table

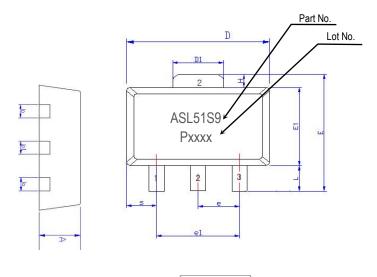
Supply voltage = +3.3 V,  $T_A$  = +25 °C,  $Z_O$  = 50  $\Omega$ .

| Parameter                 | Typical |       |       |       | Unit |
|---------------------------|---------|-------|-------|-------|------|
| Frequency                 | 1700    | 1800  | 1900  | 2000  | MHz  |
| Noise Figure              | 0.70    | 0.75  | 0.75  | 0.80  | dB   |
| Gain                      | 17.8    | 17.3  | 16.9  | 16.3  | dB   |
| S11                       | -18.0   | -18.0 | -18.0 | -18.0 | dB   |
| S22                       | -10.0   | -10.0 | -10.0 | -11.0 | dB   |
| Output IP31)              | 37.0    | 37.0  | 37.0  | 37.0  | dBm  |
| Output P1dB <sup>1)</sup> | 17.5    | 17.5  | 17.5  | 17.5  | dBm  |
| Current                   | 60      |       |       |       | mA   |
| Device Voltage            | +3.3    |       |       |       | V    |


<sup>1)</sup> OIP3 is measured with two tones at the output power of +4 dBm/tone separated by 1 MHz.

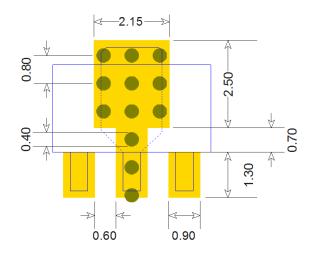
## 3.3 Plot of S-parameter & Stability Factor






## 3.4 Plot of Noise Figure






## 4. Package Outline (SOT89, 4.5x4.0x1.5 mm)



| Cymbolo | Dimensions (In mm) |      |      |  |  |
|---------|--------------------|------|------|--|--|
| Symbols | MIN                | NOM  | MAX  |  |  |
| Α       | 1.40               | 1.50 | 1.60 |  |  |
| L       | 0.89               | 1.04 | 1.20 |  |  |
| b       | 0.36               | 0.42 | 0.48 |  |  |
| b1      | 0.41               | 0.47 | 0.53 |  |  |
| С       | 0.38               | 0.40 | 0.43 |  |  |
| D       | 4.40               | 4.50 | 4.60 |  |  |
| D1      | 1.40               | 1.60 | 1.75 |  |  |
| Е       | 3.64               |      | 4.25 |  |  |
| E1      | 2.40               | 2.50 | 2.60 |  |  |
| e1      | 2.90               | 3.00 | 3.10 |  |  |
| Н       | 0.35               | 0.40 | 0.45 |  |  |
| S       | 0.65               | 0.75 | 0.85 |  |  |
| е       | 1.40               | 1.50 | 1.60 |  |  |

## 5. Surface Mount Recommendation (In mm)



#### NOTE

- The number and size of ground via holes in a circuit board are critical for thermal and RF grounding considerations.
- Recommended is that the ground via holes be placed on the bottom of the lead pin 2 and exposed pad of the device for better RF and thermal performance, as shown in the drawing at the left side.



# 6. Recommended Soldering Reflow Profile



(End of Datasheet)