- Ideal Front-End Filter for Wireless Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Complies with Directive 2002/95/EC (RoHS)

The RF3417D is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter designed to provide front-end selectivity in 315.0 MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen. Typical applications of these receivers are wireless remotecontrol and security devices (especially for automotive keyless entry) operating in the USA under FCC Part 15, in Canada under RSS-210, and in Italy.
This coupled-resonator filter (CRF) uses selective null placement to provide suppression, typically greater than 40 dB , of the LO and image spurious responses of superhet receivers with 10.7 MHz IF. Murata's advanced SAW design and fabrication technology is utilized to achieve high performance and very low loss with simple external impedance matching.

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units		
Center Frequency at $25^{\circ} \mathrm{C}$	f_{c}	1,2, 3	314.85	315.00	315.15	MHz		
Insertion Loss	$\mathrm{IL}_{\text {MIN }}$	1, 3		1.6	2.5	dB		
Passband Ripple Relative to $\mathrm{IL}_{\text {MIN }}, \mathrm{Fc} \pm 200 \mathrm{kHz}$		1,3		0.4	1.2	dB		
3 dB Bandwidth	BW_{3}	1,3	500	600	800	kHz		
Rejection Relative to $\mathrm{IL}_{\mathrm{MIN}}$ (10-295 MHz		1,3	46	51		dB		
295-305 MHz			41	46				
305-310 MHz			27	30				
$310-313 \mathrm{MHz}$			17	20				
313 -314 MHz			7	10				
316-320 MHz			9	12				
320-325 MHz			16	20				
325-335 MHz			32	36				
$335-600 \mathrm{MHz}$			42	46				
$600-1000 \mathrm{MHz}$			55	60				
Temperature Freq. Temp. Coefficient	FTC			0.032		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$		
Frequency Aging \quad Absolute Value during the First Year	IfAI	5		≤ 10		ppm/yr		
Input: $Z_{\text {IN }}=R_{\text {IN }} \\| C_{\text {IN }}$ Output: $Z_{\text {OUT }}=R_{\text {OUT }}$ IIC $_{\text {OUT }}$	$\mathrm{Z}_{\text {IN }}$	1	$1.92 \mathrm{k} \Omega$ \|	5.93 pF				
	$\mathrm{Z}_{\text {OUT }}$		$1.28 \mathrm{k} \Omega$ \|	6.09 pF				
Lid Symbolization (Y=year WW=week S=shift)	550 \|	YWWS						
$\begin{array}{ll}\text { Standard Reel Quantity } & \text { Reel Size 7 Inch } \\ & \text { Reel Size 13 Inch }\end{array}$		9	500 Pieces/Reel					
			3000 Pieces/Reel					

4
 CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.
 NOTES:

1. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss and bandwidth and passband shape are dependent on the impedance matching component values and quality.
2. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
3. Where noted specifications apply over the entire specified operating temperature range of $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.
4. The turnover temperature, T_{O}, is the temperature of maximum (or turnover) frequency, f_{o}. The nominal frequency at any case temperature, T_{c}, may be calculated from: $f=f_{o}\left[1-F T C\left(T_{o}-T_{C}\right)^{2}\right]$.
5. Frequency aging is the change in fc with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65{ }^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
6. The design, manufacturing process, and specifications of this device are subject to change.
7. One or more of the following U.S. Patents apply: $4,54,488,4,616,197$, and others pending.
8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
9. Tape and Reel Standard Per ANSI / EIA 481.

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Operable Temperature Range	-40 to +125	${ }^{\circ} \mathrm{C}$
Soldering Temperature (10 seconds $/ 5$ cycles maximum)	260	${ }^{\circ} \mathrm{C}$

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

1. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_{c}. Note that insertion loss and bandwidth and passband shape are dependent on the impedance matching component values and quality.
2. The frequency f_{c} is defined as the midpoint between the 3 dB frequencies.
3. Where noted specifications apply over the entire specified operating temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4. The turnover temperature, T_{O}, is the temperature of maximum (or turnover) frequency, f_{o}. The nominal frequency at any case temperature, T_{c}, may be calculated from: $f=f_{o}\left[1-\operatorname{FTC}\left(T_{o}-T_{c}\right)^{2}\right]$.
5. Frequency aging is the change in fc with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65{ }^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
6. The design, manufacturing process, and specifications of this device are subject to change.
7. One or more of the following U.S. Patents apply: $4,54,488,4,616,197$, and others pending.
8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.

Electrical Connections

Pin	Connection
1	Input
2	Input Ground
3	Ground
4	Case Ground
5	Output
6	Output Ground
7	Ground
8	Case Ground

Case Dimensions

Dimension	mm			Inches		
	Min	Nom	Max	Min	Nom	Max
A	3.6	3.8	4.0	0.14	0.15	0.16
B	3.6	3.8	4.0	0.14	0.15	0.16
C	1.00	1.20	1.40	0.04	0.05	0.055
D	0.95	1.10	1.25	0.033	0.043	0.05
E	0.90	1.0	1.10	0.035	0.04	0.043
F	0.50	0.6	0.70	0.020	0.024	0.028
G	2.39	2.54	2.69	0.090	0.100	0.110
H	1.40	1.75	2.05	0.055	0.069	0.080

Optional

Electrical Connections

Pin	Connection
1	Input Ground
2	Input
3	Ground
4	Case Ground
5	Output Ground
6	Output
7	Ground
8	Case Ground

Optional Matching Circuit to 50Ω

