Low Noise, High IP3 **Monolithic Amplifier**

PMA-5451+

0.05 to 6 GHz 50Ω

3mm x 3mm MCLP (EIA: QFN) Pkg

The Big Deal

- Ultra Low Noise Figure, 0.6 dB
- High IP3/Low Current, 30mA
- Wideband, up to 6 GHz

Product Overview

Mini-Circuits PMA-5451+ is a E-PHEMT based Ultra-Low Noise MMIC Amplifier operating from 50 MHz to 6 GHz with a unique combination of low noise and high IP3 making this amplifier ideal for sensitive receiver applications. This design operates on a single 3V supply at only 30mA and is internally matched to 50 Ohms.

-		
Feature	Advantages	
Ultra Low Noise,0.6 dB	Outstanding Noise Figure, measured in a 50 Ohm environment without any external matching	
High IP3, 29 dBm	Combining Low Noise and High IP3 makes this MMIC amplifier ideal for Low Noise Receiver Front End (RFE) because it gives the user advantages at both ends of the dynamic range: sensitivity & two-tone spur-free dynamic range	
Low Current, 30mA	At only 30mA, the PMA-5451+ is ideal for remote applications with limited available power or densely packed applications where thermal management is critical.	
Broad Band	Operating over a broadband the PMA-5451+ covers the primary wireless communications bands: Cellular, PCS, LTE, WiMAX	
Internally Matched	No external matching elements required to achieve the advertised noise and output power over the full band	
MCLP Package	Low Inductance, repeatable transitions, excellent thermal pad	
Max Input Power, +20dBm	Ruggedized design operates up to input powers of +20dBm without the need of an external limiter	
High Reliability	Low, small signal operating current of 30 mA nominal maintains junction temperatures typically below 100°C at 85°C ground lead temperature	

Key Features

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuit's tandard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Low Noise, High IP3 **Monolithic Amplifier**

0.05-6 GHz

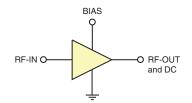
Product Features

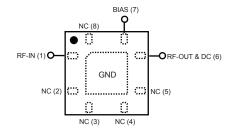
- Single Positive Supply Voltage, 3V, Id=30mA
- Ultra Low Noise Figure, 0.6 dB typ. at 0.5GHz
- High IP3, 29 dBm typ. 1GHz
- · Gain, 19dB typ. at 1 GHz
- Output Power, up to +17dBm typ.
- Micro-miniature size 3mm x 3mm
- Aqueous washable

Typical Applications

- Cellular
- ISM
- GSM
- WCDMA
- LTE
- WiMAX
- WLAN
- UNII and HIPERLAN

General Description


PMA-5451+


+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

CASE STYLE: DQ849

PMA-5451+ is a high dynamic range, low noise, high IP3, high output power, monolithic amplifier. Manufactured using E-PHEMT* technology enables it to work with a single positive supply voltage.

simplified schematic and pad description

Pad Number	Description (See Application Circuit, Fig. 3)		
1	RF input pad		
6	RF output pad (connected to RF-OUT via blocking external cap C2, and Supply voltage Vs via RF Choke L1)		
7	Bias pad (connected to Vs via Rbias)		
addle in center of bottom	Connected to ground		
2,3,4,5,8	No internal connection; recommended use: per PCB Layout PL-299		
	Number 1 6 7 addle in center of bottom		

*Enhancement mode Pseudomorphic High Electron Mobility Transistor

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Min-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Min-Circuits and ard limited warranty and terms and conditions (collectivity, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Min-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

REV. C M151107 PMA-5451+ TH/RS/CP/AM 150924 Page 2 of 6

Monolithic Low Noise E-PHEMT MMIC Amplifier

PMA-5451+

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		0.05		6.0	GHz
DC Voltage (V _d)			3.0		V
DC Current (I _d) ⁽⁶⁾		20	30	40	mA
DC Current (I _{Rbias})			1.6		mA
	0.05 0.5 1.0		1.3 0.6 0.8		dB
Noise Figure	2.0 3.0 4.0 5.0		1.0 1.3 1.5 2.0	1.3 — — —	
	6.0		2.3		
Gain	0.05 0.5 1.0 2.0 3.0 4.0 5.0		24.2 22.1 18.6 13.7 10.6 8.5 6.7	 15.1 	dB
	6.0		5.3 8.8		
Input Return Loss	0.5-6		6.5		dB
Output Return Loss	0.05-0.1 0.1-6		14.0 19.0		dB
Output IP3	0.05 0.5 1.0 2.0 3.0 4.0 5.0 6.0		27.3 27.9 29.0 30.8 31.4 30.8 31.8 31.8 32.2		dBm
Output Power @ 1 dB compression ⁽²⁾	0.05 0.5 1.0 2.0 3.0 4.0 5.0 6.0		17.0 17.0 16.9 16.8 16.9 17.4 17.3		dBm
DC Current Variation vs. Temperature (3)	0.0		-0.030		mA/°C
Thermal Resistance			128		°C/W

Electrical Specifications⁽¹⁾ at 25°C, Zo=50Ω, (refer to characterization circuit, Fig. 1)

Absolute Maximum Ratings⁽⁴⁾

Parameter	Ratings		
Operating Temperature (5)	-40°C to 85°C		
Storage Temperature	-55°C to 100°C		
Channel Temperature	150°C		
DC Voltage (Pad 6)	5V		
Power Dissipation	500mW		
DC Current (Pad 6)	80mA		
Bias Current (Pad 7)	10mA		
Input Power (7)	20dBm		

⁽¹⁾ Measured on Mini-Circuits Characterization test board TB-502+ See Characterization Test Circuit (Fig. 1)

- ⁽²⁾ P1dB specified with external current limiting of 40mA;
- Capable of higher P1dB at higher current (see Fig.2) (3) (Current at 85°C Current at -45°C)/130
- (4) Permanent damage may occur if any of these limits are exceeded.
- These maximum ratings are not intended for continuous normal operation.
- ⁽⁵⁾ Defined with reference to ground pad temperature.
 ⁽⁶⁾ Specified DC current consumption is under small signal conditions. Current will increase with input RF Power. To maintain maximum current
- consumption, external DC current limiting circuits are required on Vd line. ⁽⁷⁾ Maximum input power is specified based upon external Vd current limiting of 60mA. Maximum input power will degrade without external current limiting.

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits

Characterization Test Circuit

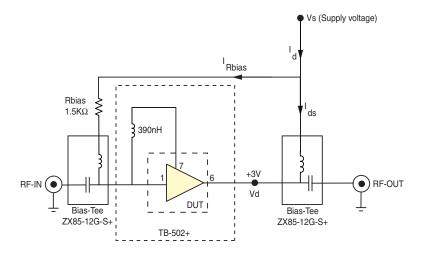


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization Test Board TB-502+) Gain, Output power at 1dB compression (P1dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X Microwave network analyzer.

Conditions:

Notes

- 1. Gain: Pin=-25 dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 5 dBm/tone at output.
- 3. Vs adjusted for 3V at device (Vd), compensating loss of bias tee.

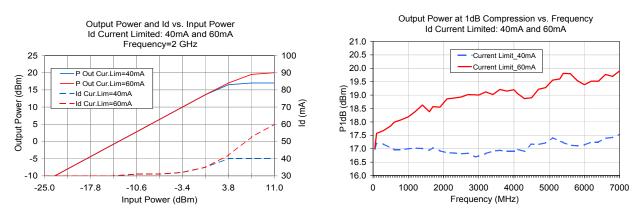


Fig 2. Output Power and Id vs. Input Power and Frequency.

Performance measured on Mini-Circuits Characterization test board TB-502+. See Characterization Test Circuit (Fig. 1) Measurements performed with current (Id) limited as noted.

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuit's tandard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Recommended Application Circuit

(refer to evaluation board for PCB Layout and component values)

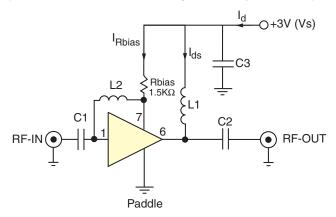
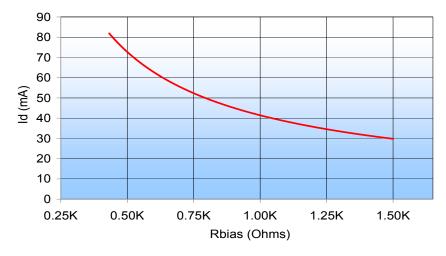
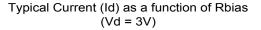
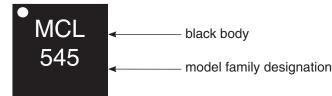



Fig 3. Recommended Application Circuit Note: Resistance of L1, 0.1-0.2Ω typically




Fig 4. Id varies as a function of Rbias. The Id current range is defined based upon the specific Rbias value noted in the Application Circuit (Fig 3). Rbias may be adjusted to optimize Id for a customers' application. RF performance will vary accordingly.

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits website at www.minicircuits.com/MCLStore/terms.jsp

⊒Mini-Circuits°

Product Marking

Additional Detailed Technical Information

Additional information is available on our web site www.minicircuits.com. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: DQ849 Plastic package, exposed paddle, lead finish: tin-silver over nickel

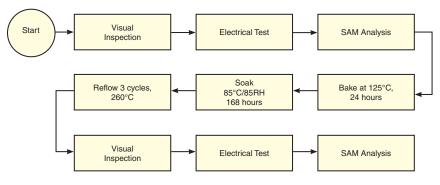
Tape & Reel: F104 Standard quantities availabe on reel: 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices.

Suggested Layout for PCB Design: PL-299

Evaluation Board: TB-501-1+ (50-5000 MHz)

Environmental Ratings: ENV08T1

ESD Rating


Human Body Model (HBM): Class 1A (250V to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (<100V) in accordance with ANSI/ESD STM5.2-1999; passes 40V

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Note

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. G. The parts covered by this specification document are subject to Mini-Circuit's tandard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

⊒Mini-Circuits°