

DC-35 GHz SPST Switch

Features

- ◆ Frequency range: DC 35 GHz
- ◆ Low Insertion loss ~ 1.3dB @ 18 GHz
- High Isolation of 40 dB
- ◆ I/O Return loss < 15 dB
- ◆ High Input P_{1dB}: 23 dBm
- On-Chip TTL driver for fast switching
- ◆ 0.5µm InGaAs pHEMT technology
- Chip Size: 1.73 mm x 1.13 mm x 0.10 mm

Functional Diagram

Typical Applications

- Military & space
- Test Equipments
- ◆ Microwave Radio, RADAR
- Broadband Telecommunications
- **◆** Commercial electronic systems

Description

The AMT2571011 is a wideband reflective Single Pole Single Throw (SPST) switch designed over a frequency range of DC–18GHz. This switch offers high isolation and low insertion loss. It has an on-chip TTL driver for high speed switching. The RF ports are DC coupled to ensure low frequency operation. The MMIC operates on +5 V, -5 V supply voltages with very low DC power consumption. This MMIC is fabricated using highly reliable and high performance InGaAs 0.5μm pHEMT Technology.

Absolute Maximum Ratings (1)

Parameter	Absolute Maximum	Units
RF Input Power	30	dBm
Positive Supply voltage	+6	V
Negative Supply Voltage	-6	V
Control Voltage		
ON	5 to +5.5	V
OFF	-0.5 to 0	V
Operating Temperature	-55 to +85	оС
Storage Temperature	-65 to +150	оС

^{1.} Operation beyond these limits may cause permanent damage to the component

Data Sheet Rev. 1.2 March 2010

Electrical Specifications $^{(1)}$ @ T_A = 25 $^{\circ}$ C, Z_o =50 Ω

Parameter	Frequency	Typ. Value	Units
	5 GHz	0.6	dB
	10 GHz	0.8	dB
Insertion Loss	15 GHz	1.0	dB
	18 GHz	1.2	dB
	35GHz	3.5	dB
Isolation	5 GHz	46	dB
	10 GHz	48	dB
	15 GHz	52	dB
	18 GHz	57	dB
	35GHz	40	dB
Input Paturn Lassas	DC – 18GHz	15	dB
Input Return Losses	DC – 35GH	13	dB
Output return Losses	DC – 18GHz	15	dB
	DC – 35GHz	13	dB
Input P1dB	DC-18GHz	23 (2)	dBm
Switching speed		40 ⁽²⁾	ns
DC Bias Voltages		+5, -5	V
Control Voltage		0/+5	V

Note:

- 1. Electrical Specifications as measured On-Wafer
- 2. Measured in a test fixture

On-Wafer data

 $T_A = 25$ °C, $Z_0 = 50\Omega$

Phone: +91-40-30618000

Fax: +91-40-23378944

Page 3 of 6 Email: info@astramwp.com URL: www.astramtl.com

Test fixture data

 $T_A = 25$ °C, $Z_0 = 50\Omega$

Data Sheet Rev. 1.2 March 2010

Truth Table

Control Voltage

State	Bias condition
Low "0"	0 - 0.5V
High "1"	3.5 - 5

Truth Table

Ctrl_vol	RF_In to RF_Out
0(Low)	Off (Isolation)
1(High)	On (Low loss)

Mechanical Characteristics

Units: millimeters [inches]

All RF and DC bond pads are 100µm x 100µm

Note:

Pad no. 1 : RF In
Pad no. 8 : RF Out

3. Pad no. 3 : Control Voltage

4. Pad no. 4: +5V5. Pad no. 6: -5V

Recommended Assembly Diagram

Note:

- 1. Both the RF ports are DC Coupled.
- 2. Two 1 mil (25.4µm) bond wires of minimum length should be used for RF input and output.
- 3. For reliable operation, 0.1µF capacitors can be used at the voltage supplies

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200µm length of wedge bonds is advised. Single Ball bonds of 250-300µm though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice