GaN Hybrid Power Amplifier # HT2121-15A #### **Product Features** - GaN on SiC HEMT - In/Out Impedance Matching - Surface Mount Hybrid Type - Small Size & Mass - · High Efficiency - Low Cost - 2W Average Output Power ### **Applications** - RF Sub-Systems - Base Station - Repeater - LTE system Package Type: NP-1E ## **Description** The HT2121-15A is designed for LTE Repeater & RF Sub-systems application frequencies from $2110 \sim 2170 \text{MHz}$ This amplifier uses GaN HEMT technology which performs high breakdown voltage, high efficiency. High In/Output impedance, High power density. ## **Electrical Specifications** @ Vds =28V, Ta=25 °C | PARAMETER | UNIT | MIN | TYP | MAX | CONDITION | |--------------------------------------|------|------|------|------|---------------------------| | Frequency Range | MHz | 2110 | - | 2170 | ZS = ZL = 50 ohm | | Power Gain | | 31.5 | 33 | 34.5 | | | Gain Flatness | dB | - | 0.8 | - | Amp : Idq1 = 47mA | | Input Return Loss | | -6 | -10 | - | Idq2 = 103mA | | Pout @ Average | dBm | - | 33 | - | | | Pout @ Psat | dBm | 40.5 | 42 | - | Pulse Width=20us, Duty10% | | ACLR* @ BW 10MHz
LTE (PAPR 7.5dB) | dD.a | - | -36 | -33 | Non DPD | | | dBc | - | -55 | - | With DPD | | Drain Efficiency | % | - | 24.5 | - | Doub @ Assessed | | Ids | mA | - | 290 | - | Pout @ Average | | Supply Voltage | V | - | -3.0 | -2.0 | Gate Bias (Vgs1 and Vgs2) | | | V | - | 28 | - | Main Bias(Vds) | #### Caution The drain voltage must be supplied to the device after the gate voltage is supplied Turn on : Turn on the Gate Voltage supply and last turn On the Drain voltage supplies Turn off: Turn off the Drain Voltage and last turn off the Gate voltage #### Note - ACLR Measured Pout=33dBm @ fc± 10MHz / 9.015MHz LTE 10MHz 1FA PAPR=7.5dB @ 0.01% probability on CCDF - 2. HT Series have internal DC blocking capacitors at the RF input and output ports # **Mechanical Specifications** | PARAMETER | UNIT | ТҮР | REMARK | |-----------|------|-----------------|--------| | Mass | g | 2 | - | | Dimension | mm | 20.5 x 15 x 4.8 | - | # HT2121-15A # **Absolute Maximum Ratings** | PARAMETER | UNIT | RATING | SYMBOL | |-----------------------------------|------|-----------|--------------| | Gate-Source Voltage | V | -10 ~ 0 | Vgs1
Vgs2 | | Drain-Source Voltage | V | 50 | Vds | | Gate Current | mA | 5.7 | Ig | | Operating Junction Temperature | °C | 225 | $T_{\rm J}$ | | Operating Case Temperature | °C | -30 ~ 85 | T_{C} | | Storage Temperature | °C | -40 ~ 100 | T_{STG} | # **Operating Voltages** | PARAMETER | UNIT | MIN | TYP | MAX | SYMBOL | |--------------------------|------|-----|-----------|-----|--------| | Drain Voltage | V | - | 28 | - | Vds | | Gate Voltage (on-stage) | V | - | Vgs1@Idq1 | -2 | Vgs 1 | | Gate Voltage (on-stage) | V | - | Vgs2@Idq2 | -2 | Vgs 2 | | Gate Voltage (off-stage) | V | - | -8 | - | Vgs 1 | | Gate Voltage (off-stage) | V | - | -8 | - | Vgs 2 | # **Block Diagram** # **Application Circuit** #### **Performance Charts** * Bias condition @ Idq1=47mA, Idq2=103mA, Vds=+28V, Ta=25 °C Power Gain vs. Frequency Psat vs. Frequency **ACLR vs. Frequency** Ids vs. Efficiency vs. Pout Input Power vs. Pout **ACLR vs. Pout** ### Package Dimensions (Type: NP-1E) * Unit: mm[inch] | Tolerance: ±0.15[.006] | Pin Description | | | | | | | | | |-----------------|----------|--------|----------|--------|-----------|----|-----|--| | Pin No | Function | Pin No | Function | Pin No | Function | | | | | 1 | RF Input | 4 | Vgs1 | 8 | GND | 11 | GND | | | 2 | GND | 5 | Vds | 9 | GND | 12 | GND | | | 3 | GND | 6 | Vgs2 | 10 | RF Output | 13 | GND | | | - | - | 7 | Vds | - | - | 14 | GND | | ## **Recommended Pattern** ## Recommended Pattern Detail 'A' #### * Mounting Configuration Notes - 1. For the proper performance of the device, Ground / Thermal via holes must be designed to remove heat. - 2. To properly use heatsink, ensure the ground/thermal via hole region to contact the heatsink. We recommend the mounting screws be added near the heatsink to mount the board - 3. In designing the necessary RF trace, width will depend upon the PCB material and construction. - 4. Use 1 oz. Copper minimum thickness for the heatsink. - 5. Do not put solder mask on the backside of the PCB in the region where the board contacts the heatsink - 6. We recommend adding as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. Korean Facilities: 82-31-250-5078 / rfsales@rfhic.com # HT2121-15A #### **Precautions** This product is a Gallium Nitride Transistor. The Gallium Nitride Transistor requires a Negative Voltage Bias which operates alongside a Positive Voltage Bias. These Biases are applied in accordance to the Sequence during Turn-On and Turn-Off. The Pallet Amplifier does not have a built-in Bias Sequence Circuit. Therefore, users need to either apply positive voltages and negative voltages in the required sequence, or add an external Bias Circuit to this Amplifier. The required sequence for power supply is as follows. ## **During Turn-On** - 1. Connect GND. - 2. Apply Vgs1 and Vgs2. - 3. Apply Vds. - 4. Apply the RF Power. ## **During Turn-Off** - 1. Turn off RF power. - 2. Turn off Vds, and then, turn off the Vgs1 and Vgs2. - 3. Remove all connections. - Sequence Timing Diagram - # HT2121-15A #### **Reflow Profile** #### * Reflow oven settings | Zone | A | В | С | D | E | F | |-----------------|--------------|-------------|-------------|-------------|-------------|---------------------| | Temperature(°C) | 30 ~ 150 ℃ | 150 ~ 180 ℃ | 180 ~ 220 ℃ | 220 ~ 220 ℃ | 235 ~ 240 ℃ | 2 ~ 6 °C / Sec Drop | | Belt speed | 55 ~ 115 sec | 55 ~ 75 sec | 30 ~ 50 sec | 30 ~ 50 sec | 5 ~ 10 sec | 60 ~ 90 sec | #### * Measured reflow profile ### **Ordering Information** | Part Number | Package Design | | |-------------|-------------------------|--| | | -R (Reel) | | | HT2121-15A | -B (Bulk) | | | | -EVB (Evaluation Board) | | ## **Revision History** | Part Number | Release Date | Version | Modification | Data Sheet Status | |-------------|--------------|---------|----------------------------------|-------------------| | HT2121-15A | 2012.12.27 | 0.4 | Changed Frequency & Model Number | Preliminary | | HT2008-15A | 2012.11.21 | 0.3 | Changed Document | Preliminary | | HT2008-15A | 2012.09.10 | 0.2 | Changed Quiescent current | Preliminary | RFHIC Corporation reserves the right to make changes to any products herein or to discontinue any product at any time without notice. While product specifications have been thoroughly examined for reliability, RFHIC Corporation strongly recommends buyers to verify that the information they are using is accurate before ordering. RFHIC Corporation does not assume any liability for the suitability of its products for any particular purpose, and disclaims any and all liability, including without limitation consequential or incidental damages. RFHIC products are not intended for use in life support equipment or application where malfunction of the product can be expected to result in personal injury or death. Buyer uses or sells such products for any such unintended or unauthorized application, buyer shall indemnify, protect and hold RFHIC Corporation and its directors, officers, stockholders, employees, representatives and distributors harmless against any and all claims arising out of such unauthorized use. Sales, inquiries and support should be directed to the local authorized geographic distributor for RFHIC Corporation. For customers in the US, please contact the US Sales Team at 919-677-8780. For all other inquiries, please contact the International Sales Team at 82-31-250-5078.